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No one ever steps in the same 

river twice, for it’s not the same 

river and not the same person. 
 

Paraphrasing Heraclitus 

544 B.C. 

 

 

 
Abstract. Audio textures comprise a class of sounds that are 

simultaneously stable at long time scales but complex and unpredictable 

at shorter time scales. In sound art practices, textures break from the 

pitched and metrical patterns of the past. Their complexity and 

unpredictability at one level combined with the sense of eternal sameness 

at another can be read as reflecting aspects of the last millennium of 

urbanization, techno- logical advancement, the rescaling of time and 

space through travel and communication, and the recent disruptions to 

rhythms and patterns due to a pandemic. Contemporary sound artists 

exploit the riches of audio textures, but their complexity makes them a 

challenge to model in such a way that they can be systematically explored 

or played like musical instruments. Deep learning approaches are well-

suited to the task and offer new ways for the instrument designer to pursue 

their craft of providing a means of sound access and navigation. In this 

paper I discuss four deep learning tools from the sound modeler’s 

workbench, how each is the right tool for a different part of the job of 

addressing the various compelling aspects of audio textures, and how they 

can work artistically. 

 
 

1 Introduction 
 

1.1 Historical context 

The incorporation of noise into art has been an ongoing process for well over a 

hundred years now. The history is deeply connected with socioeconomic 

evolution. The migrations from rural to urban environments disrupted the 

circadian rhythms of daily life. Machinery of the industrial revolutions 

immersed us in noisier soundscapes. These disruptions naturally found their 

way into artistic expression. Luigi Russolo’s suite of mechanical instrument 

inventions including roarers, scrapers, howlers, etc. were orchestrated in his 

composition Sounds of the City in 1923. Music was moving off the pitch-time grid 

to which it had long been bound, and the luthier’s concern would no longer be 

the ‘warm tone’ mastered by Stradivarius. 

Technological developments are also deeply entwined with the story of 

arrhythmia and noise in sonic artistic practice. Audio recording brought the 

ability to ‘displace’ an original sound source in location and time as well as 

to capture and reproduce sounds exactly no matter how complex. Magnetic tape  

afforded rhythmic and arrhythmic reassembling of sound. Electronic circuits 

opened up access to a vast new space of sounds not previously accessible with 
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physical acoustic systems. The digital computer can be inscribed with any sound- 

generating processes that can be written in mathematical or algorithmic form. 

The combination of physical, electronic and digital systems has given artists 

tools for sensing in any domain and mapping to arbitrary sound which broadens the 

possibilities for “instrument” design almost beyond recognition. 

This paper is about recent developments in the practice of instrument making, 

or to use a term less burdened by historical baggage, ‘sound modeling’. The sonic 

focus will be on audio textures, a class of sounds far broader and more complex  

than the pitched sounds produced by traditional musical instruments, and thus 

reflective of the sound we now so freely accept in sound art. The modeling tools 

and techniques that will be discussed come from emerging developments is 

machine learning. The discussion is not meant as a scientific presentation of the 

tools but will attempt to share with the lay reader enough technical detail to  

appreciate how they work, and how they connect with various aspects of audio 

textures that might be explored for artistic purposes. 

 
1.2 Audio texture 

An audio ‘texture,’ like its analogs in the visual and haptic domains, can be  

arbitrarily complex. Some examples include the sound of wind, radio static, rain, 

engines, air conditioners, flowing rivers, running water, bubbling, insects,  

applause, train, church bells, gargling, frying eggs, sparrows, jackhammers, fire,  

cocktail party babble, shaking coins, helicopters, wind chimes, scraping, rolling, 

rubbing, walking on gravel, thunder, or a busy electronic game arcade. 

Artists use such sounds in a variety of ways such as incorporating sounding 

objects in performance and installations, or by recording sounds and possibly 

manipulating them electronically. Modeling the sounds or sounding objects so 

that they can be synthesized is a way of providing new possibilities for exploration, 

interaction, and performance. However, capturing the natural richness of  textures 

in a computational model and designing interaction for them is challenging.  

For the purpose of sound modeling, it is helpful to start by thinking of 

textures as either ‘stationary’ or ‘dynamic.’ Despite their complexity, for some long  

enough window of time, there is a description of a stationary texture that need 

not change for different windows of time (Figure 1). Sitting next to a babbling 

brook, we hear the sound as ‘the same’ from minute to minute, even though we 

know that the sequence of splashes, bubbles, and babbles is never literally the 

same at two different moments of time. However, if it started to rain, the brook 

would change due to the increasing rush and flow. We would describe the sound 

differently after the rain than before the rain, and this illustrates the dynamic 

aspect of an audio texture. 

 
 

 
 

Fig. 1: Left: As long as the rain falls at the same rate, we think of the texture as “the 

same” even though the sound (as well as the image on the lake) is never  literally 

identical at different times (Image: Lake Superior Rain, Kate Gardiner, CC-NC). 

Right: Wind changes at a slower time scale requiring a larger window of time than 

rain for a ‘stationary’ description. 
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The distinction between a stationary and dynamic texture is precisely analogous 

to the distinction between a note and a melody in terms of traditional instruments. 

The luthier factors out the interactive performative control from the sound 

generation. The sound of the different static configurations is characteristic of the 

instrument or model, while the dynamic sequence of configurations defines the 

imposed expressive or musical content. The sound generation is then conditionally 

dependent upon the instrument player’s parametric control through an interface. 

 

1.3 Previous texture modeling strategies 
 

Computational sound modeling is typically a time and resource intensive process  

of writing code. There are a variety of approaches that address the complexity 

of textures. 

One approach is to assemble sounds from a massive set of tiny pieces. Granular 

synthesis has been theorized and used by musicians such as Iannis Xenakis  (1992), 

Barry Truax (1988) (for example in his piece River Run1) and Curtis Roads (1988) 

(Roads, 2004). The term is used to describe a family of techniques such as 

assembling windowed sine tones of varying frequencies and windows spanning a 

few cycles of the wave form. A related technique is called “granulation” which 

breaks a recorded sound into tiny pieces before reassembling them (Truax, 1988). 

By specifying various distributions of grains in time, grain signal choices and 

window sizes, innumerable similar textures can be created. Related techniques 

include wavelet analysis and resynthesis (Dubnov, Bar-Joseph, El-Yaniv, 

Lischinski, & Werman, 2002) and concatenative synthesis (Schwarz, 2006). 

Physical models simulate the actual physical behavior of sound sources. 

Simulated plates, tubes, and strings is great for models of pitched instruments, 

but many physical systems generate more complex textures. For example, the 

sound of raindrops can be modeled with wave and acoustic pressure equations  

describing surface impacts (Miklavcic, Zita, & Arvidsson, 2004). Other sounds  

derived from physical phenomena such as bubbling in liquids have been modelled 

based on fluid simulations (Moss, Yeh, Hong, Lin, & Manocha, 2010; van den Doel, 

2005). Rolling, scrapping, and rubbing sounds with a continuous interaction 

between different objects have been explored (Conan et al., 2014). Perry Cook 

developed an approach referred to as “physically informed” modeling (Cook, 1997) 

for sounds such as rattles and footsteps. 

 

1.4 A paradigm shift 

There is a deep interdependence between the sound space that artists work with and 

the technologies available during the historical time in which they live. The 

recording technologies (phonographic and magnetic tape) of the early 20th  

centuries brought any sound producible in the physical world into the studio 

and on to the stage. Tape could be speed controlled and spliced, and vinyl can 

be scratched, but it was the electronic instruments, and later digital computers 

that seemed to promise that any imaginable sound could be synthesized and 

arbitrarily manipulated performatively. Still, even a synthesizer that can make “any 

sound” has limits on the ways the sound space can be navigated. The quest 

continues for the holy grail of access to any and all sound arranged in a  designable 

space for arbitrary navigation. That search is now conducted using the most power-

hungry, cloud-based virtually served artificial intelligence machinery. It is driven 

by artists, engineers, and scientists who might only meet virtually in that same 

cloud immersed in a communication system that logs their every keystroke as data 

for AI analysis. Even the pandemic-driven physical isolation seems to drive this 

mode of production and communication that resonates so deeply with the 

technologies being developed for artistic exploitation. 

Recent years have seen big data and deep learning models disrupt almost 

 
1 audition at https://www.youtube.com/watch?v=u81IGEFt7dM 
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every scientific and technical endeavor, and it is no different in the world of sonic  

arts. Modeling, in particular for generative processes like image and sound 

synthesis, is now often data driven. Rather than providing a machine with explicitly 

coded algorithms that execute to produce sound, a learning system is trained to 

produce media given (usually lots of) data. 

Seminal work in data driven modeling of audio textures was done by Mc- 

Dermott and Simoncelli (McDermott & Simoncelli, 2011). They studied human 

perception of audio textures by generating audio examples to match extracted 

statistical measurements on noise samples. Their synthesis by analysis approach 

worked well on sounds with variation at shorter time scales but was less successful 

on sounds with longer-term structure. More recently Ulyanov and Lebedev 

(2016) modeled musical textures, and others have since applied their approach 

to general purpose audio (Antognini, Hoffman, & Weiss, 2018; Grinstein, Duong, 

Ozerov, & Pérez, 2018; Huzaifah & Wyse, 2020). 

The next section takes a deeper dive in to four specific deep learning 

architectures that have been effectively used to address the challenge of 

synthesizing complex and noisy data such as natural sound textures. 

 

2 A Sound Modeling Toolset 
 

To the uninitiated, the suite of tools in a violin-makers workshop are a large 

and curious-looking set. From thickness calibrators to router guides, peg hole 

reamers, gaugers, planers, and purfling tools, the specialized and motley 

collection bear names as colorful as the tools. So it is for the modern-day sound 

model designer. In this section we will discuss four important tools hanging on 

the wall of the sound modelers workshop: The Generative Adversarial Network 

(GAN), the Self-Organizing Map (SOM), the Style-Transfer Network (STN) and 

the Recurrent Neural Network (RNN). I will furthermore give these tools more 

familiar nicknames: the Interpolator, the Smoother, the Variator, and the Per- 

former (Figure 2), that better describe their functionality. Like the tools on any 

workbench, each has its own function and using one to do the job of another can 

only lead to disaster. 

 

2.1 The Interpolator 

 

We have high demands and expectations for data-driven synthesizer design: when 

we train a system with data, we want a system that can generate not only the sounds 

in the training data set, but a “filled out” space of sounds. That is, we demand that 

our system create novel sounds, even if such sounds do not come from the physical 

world. If we provide sounds of rain and the din of forest bugs as training data, then 

we expect to play a “morph” on the new instrument in the same way we play a scale 

between pitches on a violin. The Interpolator (GAN) is a somewhat unwieldy tool 

for sound design, but it does construct a navigable high-dimensional space where 

in some regions it generates sounds like those in the data set, and for the rest of the 

space, it invents convincing “in between” sounds. 

The tool gets its formal name (Generative Adversarial Network) from the way 

it is structured in two parts. The first part (the ‘ Generator’) learns to organize 

a map from an input space of parameters to a set of sounds that are distributed 

similarly to the dataset. The second part, (the ‘Discriminator’) is tasked with  

learning to recognize sounds from the Generator vs. sound from the database  

(Figure 2(a)). The two networks are “adversaries” as the Generator trains to 

fool the Discriminator. When training completes, and the Discriminator can no 

longer differentiate between the real and synthetic sounds, we have the sound 

generator we seek. 
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Fig. 2: Left: Violin maker’s toolset (Image: Project Gutenberg EBook of Violin Making, Project 

Gutenberg License). Right: Sound modeler’s toolset, (a) The “Interpolator” (GAN) learns to 

create novel “‘tween” sounds as the generator G trains to fool the discriminator D, (b) The 

“Smoother” (SOM) makes distances between sounds more uniform as it resamples the 

parameter space, (c) The “Variator” (SNT) creates stationary textural variations by matching 

network activation statistics of a target texture, and (d) The “Performer” (RNN) generates 

sound one sample at a time in response to parameters. 

 

 
To appreciate the nature of this tool, the first thing to note is that it creates a mapping 

from a large number of input parameters to sound characteristics. This is what is meant by 

“creating a space” for the sounds, and mapping is done by the tool, not by the sound designer. 

The sound designer must figure out what the parameters actually do to the sound after 

training! Secondly, the number of input parameters is much larger than those we typically 

use to control an instrument. The network might require over 100 dimensions in order to 

organize a sensible space, but for an instrument to be playable by a human, it must offer a far 

smaller number. 

Reflecting on how the Interpolator does its job provides some insight into the relationship 

between technology and our historical times. The machine requires a certain amount of autonomy 

to do its job properly. We can provide some guidance by encoding and communicating our 

objectives, but we can not micromanage its organization of the sound space. In fact, to meet our 

goals for synthesizing and interacting with natural and novel sounds, there is generally far too 

much data address, and the synthesis algorithms learned by the machine are too complex for mere 

mortals to organize or manually design. The process depends on yielding what may have 

previously been considered creative decision making to the machine.  

The self-organization and generation of novelty only address part of the playability 

requirements. A limitation of the Interpolator is that it learns long (e.g. 4- second) chunks of 

sound for each parameter, so is structurally incapable of being “played” in response to 

continuously varying control parameters. Furthermore, it generates a single sound for each 

point in the space, not the infinite number of variations we associate with a texture of a given 

description such as the ever-changing sound of a river with a particular rate of flow. This is a 

job for the Variator described below. 

 
2.2 The Smoother 

 

The Interpolator distributes sound in a parametric space but does not necessarily do so evenly. 

That is, large parts of the space can be devoted to one or another type of sound and moving over 
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the border from the territory of one to the territory of another might happen very fast. We want to 

expand the transitions, and the great thing about the Interpolator’s space is that it can be zoomed 

infinitely. An analogy to this smoothing process would be zooming in on dusk and dawn so that 

they last as long as day and night. 

The Smoother’s Self Organizing Map (SOM) (Kohonen, 1998) can learn to create a map 

of a data distribution with a 2-diminsional grid-like representation (Figure 2(b)). Playing the 

remapped instrument, we would move quickly through the regions of sound space where 

nothing much changes as you navigate, and dwell in the unstable and changing regions 

between them. To exploit an acoustic instrument analogy again, it would be a like removing 

the fret bars from a guitar which cause the pitch to be the same for fingering positions between 

them so that it would behave more like a (fretless) violin where changes happen smoothly as 

a finger glides along the neck. This is more natural for textures which do not lend themselves 

to standardized discrete scales in the way that legacy musical instruments do. It is probably 

not just an accident of history that we can see the less categorically punctuated and metrical 

lives we are now living reflected in the borderless sound space of textures that comprise so 

much sound art today. The Smoother is a tool that literally expands the space and time at 

narrow border regions turning them in to spaces in their own right for the discovery of novel 

sound that might otherwise go by unnoticed. 

 
2.3 The Variator 

The essence of textures is infinite variation, and for this we reach for another deep learning tool, 

the Style-transfer networks (STN). Most people have encountered STN’s in the image domain 

where they take style and textural elements from one image such as a painting to generate a 

variation on the “content” of another (Figure 3) (Gatys, Ecker, & Bethge, 2015), thus our 

nickname, the Variator. It can also be used without content, to simply reproduce images with 

a similar texture to the original. The network can be used the same way for sound. 

 

 
 

Fig. 3: Style transfer networks have been used in the image domain to superimpose the style of 

one image (van Gogh’s The Starry Night, inset) onto content from one image (left) to produce 

new images (right). (Images from Gatys et al. (2015), used with permission). 

 

The way this tool works is that a segment of sound exhibiting the ‘target’  texture is fed in 

to a neural network. Then the feature activation pattern of one or more network layers are 

correlated with each other in a time-independent way. Features might represent anything from 

a short rhythmic pattern, to how pitched an event is. The matrices of feature characteristics 

are represented by the grids at the top of Figure 2(c). 

Next, we use the network and the target matrix of feature correlations to construct new 

sounds. We do that by feeding random noise in to the network, deriving its feature 

characteristics and tweaking the noise until its features characteristics match that of the target. 

When the process completes, we have a new sound with the texture of the target, but a 

different temporal structure or variation (Figure 4). 
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This tool has a profoundly beautiful nature: the neural network that serves 

as the audio feature extractor need not be trained. The same network works as 

well for sounds of birds flying, rain falling, air conditioners humming, rocks 

rolling, or cattle bellowing. Indeed, the network need not be trained at all, and 

features can be entirely random. It seems to matter not what the audio features 

actually are, but rather what the pattern of relationships between features is.  

The Variator also works on an aspect of textures that have a very particular 

alignment with a common experience of patterns of contemporary life in the 

times of a pandemic, and that is that it can create an endless series of sounds  

that, despite their infinite variety, all sound in some way “the same.” 

In summary, the Variator generates variations of a static texture for a 

particular instrumental configuration. However, it does not provide the dynamic 

textures for which playable reconfigurations of instruments are required.  

 

  
 

 

Fig. 4: The two rows correspond to two different dynamic parameter settings. Each 

column shows textural variations of the sound for those parameter settings. 

 

2.4 The Performer 

 
The Performer is oriented toward generating sound sequentially in time, unlike 

the Interpolator and the Variator which generate fixed duration chunks of sound. 

It gets its formal name, Recurrent Neural Network (RNN), from the fact that the 

audio output from each step is fed back in as input along with the parameters to 

create the network state that produces the next sample (Figure 2(d)). It provides 

the playable parametric interface for a musician and generates sound samples  

one at a time that are immediately responsive to parametric input from the 

instrumentalist. 

When we train the Performer, we provide whatever parameters we want to use 

to interact with the sound. This network learns to map the parameters and the 

previous sound sample, together with its current state of activation, to the next 

sound sample in time. As instrument designers, we choose what the parameters 

“mean” by associating them with the specific sequences of sound we want the 

model to produce. Thus, if we want an interface parameter to control the 

“roughness” of a scratching sound or the speed of a steam engine, we simply pair 

appropriate values for the parameter with the sounds we expect them to generate. 
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The Performer learns the mapping. 

The mapping from interface to sound need not be deterministic. That is, if we pair 

a “flow rate” parameter to a rushing water sound, the model can, like the brook it is 

modeling, generate endless variations of the stationary processes associated with a 

single input parameter configuration, never repeating the exact same sound sequence. 

It is at the same time capable of a dynamic range of sounds responding to different 

configuration parameters for flow rate, for example. 

 

3 The toolset working as an ensemble 
 

No craftsperson would use a single tool for all jobs. The tools discussed above 

all have complementary strengths and weakness in the same way that a violin 

luthier’s router and purfling set do. As an example of texture instrument 

building, the Interpolator was trained on a set of one-second texture sounds 

from sound artist Brian O’Reilly2, from which we extract a 2-dimensional slice 

for dynamic musical control with 2 parameters. After the Smoother adjusts the 

spacing between sounds, the Variator generates extended stationary variations  

at each parameter point. Finally, the Performer is trained so that the sound 

can be generated continuously as the space is explored musically by a human 

performer. A visualization of how the Interpolator, the Smoother, the Variator  

and the Performer all work together can be seen in Figure 5 and auditioned 

online3. 

 
4 Final reflections 

 
The noisy and complex sounds that constitute such an important part of 

contemporary sound art practices are fiendishly difficult to model using 

traditional approaches to signal processing and computer programming. New deep 

learning approaches are synergistically evolving with contemporary artistic 

interest in exploring the multi-scale complexity of natural sounds that are 

together situated in the world that is itself evermore computationally created, 

mediated, and richly textured. 

 The tools described herein are being explored by artists in a variety of 

media, representing a space of convergence for exploring themes such as 

creative partnerships with machines, questions of authorship, the incorporation 

of massive amounts of data in artistic production, and many others. Whether 

the machines are mobilized for text generation, choreography, visual arts, or 

music, they generally require a different mode of interaction with artists than 

traditional tools. Rather than explicit control through physical manipulation or 

programming, the artist might interact with the more autonomous tools by 

providing training data or communicating through visual or speech channels. 

Often the artist evaluates and curates the output from the machines. The style 

transfer network (‘Variator’) is one such example that emerged first in the 

visual domain. The artist “guides” its behavior with target images for content 

and/or texture, but the machine makes the actual images (or sounds) for the 

artist.  

There are both aesthetic and functional reasons for striking different balances 

between control and indeterminacy in the tools described here and the creative 

use of sound they support. No claims about the right way to think about sound 

art are intended with this approach to sound modeling with its separation of control 

and texture generation. The practice of modeling and instrument interface 

design is necessarily explicit about which aspects of a sound are controllable  

and which are left open to textural variation, but the tool set we have been 

exploring supports various ways of making choices framing the way we hear,  

interact with, and make complex sound as part of the design process. 

 
2 https://vimeo.com/dendriform 
3 https://animatedsound.com/arrhythmia2021 
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Fig. 5: Each of the four tools presented accomplishes a unique and critical part to 

the instrument building processes. The Interpolator fills out a space of dynamic 

textures (indexed here by parameter pairs x and y), the Smoother adjusts the 

space to more evenly spread the interpolations, the Variator creates different  

stationary textures (shown stacked) at each point, and the Performer makes the 

space playable along paths under instrumental control. To listen to how these  

tools work, visit https://animatedsound.com/arrhythmia2021. 

 

The focus of this paper has been on modeling audio textures that extend 

our musical legacy of pitched sounds and regular meters. The data-driven 

instrumental sound design process also differs from a traditional lutherie in that it  

reflects a conception of a space of sound that is infinitely generative and 

configurable rather than one for which there could ever be a definitive set of 

canonical instruments for playing. While these new sound design processes are 

inextricably entwined with the very computational and communication 

technologies that too often oppress, surveil, misinform, and isolate us, they subvert 

these tendencies with their rich creative musical potential. 
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